ParaMonte Fortran 2.0.0 Parallel Monte Carlo and Machine Learning LibrarySee the latest version documentation.
pm_mathConst.F90 File Reference

Go to the source code of this file.

## Data Types

type  pm_mathConst::origin_type
This is the derived type origin_type representing the geometric origin of the coordinates. More...

type  pm_mathConst::ninf_type
This is the indicator type for generating instances of objects that indicate the use of the negative infinity $$-\infty$$ as an input argument to the generic interfaces of the ParaMonte library.
More...

type  pm_mathConst::pinf_type
This is the indicator type for generating instances of objects that indicate the use of the positive infinity $$+\infty$$ as an input argument to the generic interfaces of the ParaMonte library.
More...

## Modules

module  pm_mathConst
This module contains relevant mathematical constants.

## Variables

character(*, SK), parameter pm_mathConst::MODULE_NAME = "@pm_mathConst"

real(RKB), parameter pm_mathConst::PI = acos(-1._RKB)
The scalar real constant of kind with highest available precision RKB representing the irrational number $$\pi$$. More...

real(RKB), parameter pm_mathConst::TWO_PI = 2 * PI
The scalar real constant of kind with highest available precision RKB representing twice the irrational number $$\pi$$. More...

real(RKB), parameter pm_mathConst::HALF_PI = .5_RKB * PI
The scalar real constant of kind with highest available precision RKB representing half the irrational number $$\pi$$. More...

real(RKB), parameter pm_mathConst::INVERSE_PI = 1._RKB / PI
The scalar real constant of kind with highest available precision RKB representing the inverse of the irrational number $$\pi$$. More...

real(RKB), parameter pm_mathConst::QUARTER_PI = .25_RKB * PI
The scalar real constant of kind with highest available precision RKB representing a quarter of the irrational number $$\pi$$. More...

real(RKB), parameter pm_mathConst::LOG_PI = log(PI)
The scalar real constant of kind with highest available precision RKB representing $$\log(\pi)$$. More...

real(RKB), parameter pm_mathConst::SQRT_PI = sqrt(PI)
The scalar real constant of kind with highest available precision RKB representing $$\sqrt{\pi}$$. More...

real(RKB), parameter pm_mathConst::LOG_TWO_PI = log(TWO_PI)
The scalar real constant of kind with highest available precision RKB representing $$\log(2\pi)$$. More...

real(RKB), parameter pm_mathConst::SQRT_TWO_PI = sqrt(TWO_PI)
The scalar real constant of kind with highest available precision RKB representing $$\sqrt{2\pi}$$. More...

real(RKB), parameter pm_mathConst::SQRT_HALF_PI = sqrt(HALF_PI)
The scalar real constant of kind with highest available precision RKB representing $$\sqrt{\frac{\pi}{2}}$$. More...

real(RKB), parameter pm_mathConst::INVERSE_SQRT_PI = sqrt(INVERSE_PI)
The scalar real constant of kind with highest available precision RKB representing $$\frac{1}{\sqrt{\pi}}$$. More...

real(RKB), parameter pm_mathConst::INVERSE_SQRT_TWO_PI = 1._RKB / SQRT_TWO_PI
The scalar real constant of kind with highest available precision RKB representing $$\frac{1}{\sqrt{2\pi}}$$. More...

real(RKB), parameter pm_mathConst::LOG_INVERSE_SQRT_TWO_PI = log(INVERSE_SQRT_TWO_PI)
The scalar real constant of kind with highest available precision RKB representing $$\log\left(\frac{1}{\sqrt{2\pi}}\right)$$, frequently appearing in distributions (e.g., Normal). More...

real(RKB), parameter pm_mathConst::NAPIER = exp(1._RKB)
The scalar real constant of kind with highest available precision RKB representing the Napier constant (a.k.a. Euler number) $$e = \exp(1)$$. More...

real(RKB), parameter pm_mathConst::LOG_TWO = log(2._RKB)
The scalar real constant of kind with highest available precision RKB representing $$\log(2)$$. More...

real(RKB), parameter pm_mathConst::LOG_TEN = log(1.e1_RKB)
The scalar real constant of kind with highest available precision RKB representing $$\log(10)$$. More...

real(RKB), parameter pm_mathConst::LOG_HALF = log(0.5_RKB)
The scalar real constant of kind with highest available precision RKB representing $$\log\left(\frac{1}{2}\right)$$. More...

real(RKB), parameter pm_mathConst::SQRT_TWO = sqrt(2._RKB)
The scalar real constant of kind with highest available precision RKB representing $$\sqrt{2}$$. More...

real(RKB), parameter pm_mathConst::LOG10_NAPIER = log10(NAPIER)
The scalar real constant of kind with highest available precision RKB representing $$\log_{10}(e)$$. More...

real(RKB), parameter pm_mathConst::INVERSE_LOG_TWO = 1._RKB / LOG_TWO
The scalar real constant of kind with highest available precision RKB representing $$\frac{1}{\log(2)}$$. More...

real(RKB), parameter pm_mathConst::INVERSE_SQRT_TWO = 1._RKB / SQRT_TWO
The scalar real constant of kind with highest available precision RKB representing $$\frac{1}{\sqrt{2}}$$. More...

type(origin_type), parameter pm_mathConst::ORIGIN = origin_type()
The scalar constant object of type origin_type representing the geometric origin of the coordinates. More...

real(RKB), parameter pm_mathConst::EULER_CONST = 0.577215664901532860606512090082402431042159335939923598805767234884867726777664670936947063291746749_RKB
The scalar real constant of kind with highest available precision RKB representing the Euler-Mascheroni constant. More...

real(RKB), parameter pm_mathConst::APERY_CONST = 1.20205690315959428539973816151144999076498629234049888179227155534183820578631309018645587360933525814619915_RKB
The scalar real constant of kind with highest available precision RKB representing the Apery constant. More...

real(RKB), parameter pm_mathConst::PRIME_CONST = .414682509851111660248109622154307708365774238137916977868245414488640960619357334196290048428475777939616_RKB
The scalar real constant of kind with highest available precision RKB representing the irrational Prime constant. More...

real(RKB), parameter pm_mathConst::GOLDEN_RATIO = .5_RKB * (1._RKB + sqrt(5._RKB))
The scalar real constant of kind with highest available precision RKB representing the Golden Ratio constant. More...

real(RKB), parameter pm_mathConst::SILVER_RATIO = 1._RKB + sqrt(2._RKB)
The scalar real constant of kind with highest available precision RKB representing the Silver Ratio constant. More...

real(RKB), parameter pm_mathConst::SUPER_GOLDEN_RATIO = (2._RKB * cosh(acosh(29._RKB / 2._RKB) / 3._RKB) + 1._RKB) / 3._RKB
The scalar real constant of kind with highest available precision RKB representing the Supergolden Ratio constant.
More...

type(ninf_type), parameter pm_mathConst::ninf = ninf_type()
The scalar constant object of type ninf_type that indicates the use of the negative infinity $$-\infty$$ as an input argument to the generic interfaces of the ParaMonte library.
More...

type(pinf_type), parameter pm_mathConst::pinf = pinf_type()
The scalar constant object of type pinf_type that indicates the use of the positive infinity $$+\infty$$ as an input argument to the generic interfaces of the ParaMonte library.
More...