####################################################################################################################################
####################################################################################################################################
####
#### MIT License
####
#### ParaMonte: plain powerful parallel Monte Carlo library.
####
#### Copyright (C) 2012-present, The Computational Data Science Lab
####
#### This file is part of the ParaMonte library.
####
#### Permission is hereby granted, free of charge, to any person obtaining a
#### copy of this software and associated documentation files (the "Software"),
#### to deal in the Software without restriction, including without limitation
#### the rights to use, copy, modify, merge, publish, distribute, sublicense,
#### and/or sell copies of the Software, and to permit persons to whom the
#### Software is furnished to do so, subject to the following conditions:
####
#### The above copyright notice and this permission notice shall be
#### included in all copies or substantial portions of the Software.
####
#### THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
#### EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
#### MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
#### IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
#### DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
#### OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
#### OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
####
#### ACKNOWLEDGMENT
####
#### ParaMonte is an honor-ware and its currency is acknowledgment and citations.
#### As per the ParaMonte library license agreement terms, if you use any parts of
#### this library for any purposes, kindly acknowledge the use of ParaMonte in your
#### work (education/research/industry/development/...) by citing the ParaMonte
#### library as described on this page:
####
#### https://github.com/cdslaborg/paramonte/blob/main/ACKNOWLEDGMENT.md
####
####################################################################################################################################
####################################################################################################################################
import numpy as np
# number of dimensions of the distribution
NDIM = 1
# the coefficient of the Standard Multivariate Normal Distribution: log(1/sqrt(2*Pi)^ndim)
LOG_SMVN_COEF = NDIM * np.log( 1.0 / np.sqrt(2.0*np.pi) )
# define Python function
#def getLogFunc_pntr(ndim,Point): return LOG_SMVN_COEF - 0.5 * np.sum( np.double( Point[0:ndim[0]] )**2 )
[docs]def getLogFuncRaw(ndim,Point): return LOG_SMVN_COEF - 0.5 * np.sum( np.double( Point[0:ndim] )**2 )
[docs]def getLogFunc(Point): return LOG_SMVN_COEF - 0.5 * np.dot(point,point)